

Product Data Sheet

PU FR301

Blended Polyol

Table 1: Typical physical & chemical properties

Appearance:	Yellow liqui	id			
Viscosity:	500+/-100	mpas	at	20°C	
Specific gravity:	1.10	g/cm³	at	20°C	

Introduction

PU FR 301 is a compounded polyether polyol blend containing water and HCFC-141B as blowing agents. It is developed for discontinuous panel use...

Table 2: Processing recommendations

It is recommended that the chemicals are mixed as follows:

PU FR301	100 pbw		
PU ISO 125	120 pbw		
Comp. Temp	22+/-3 °C		
Inj. Pressure	150 bar		
Machine type:	High pressure machine		

Last updated: 20240610

Issued on: 17-Jun-24 Ref:

Processing recommendations

The chemicals should be adjusted to the correct temperature before use to ensure reactivity and viscosity is suitable for processing.

Health and safety

The appropriate Health and Safety advice can be found in the provisional safety data sheet supplied with this provisional product data sheet.

Storage recommendations

The storage life of this product referred to in this data sheet is provisionally 6 months at 15-25°C in a shaded area out of direct sunlight. Keep drums well sealed to avoid ingression of moisture.

It is essential that the polyol must be thoroughly mixed before use. This can be achieved by drum rolling for minimum of 15 minutes, or using a high shear mixer for 5 – 10 minutes.

Product Data Sheet

PU FR 301

Table 3: typical formulations and reactivity

Index	100		
P/I Ratio	100 / 120		
Raw material Temp.	25+/-2 °C	;	
Cream Time	11+/-2	Sec	
String Time	65+/-5	Sec	
End of Rise	86+/-5	Sec	
Free Rise Density	26+,-2	Kg/m	

Typical reactivity

A foam produced in a small scale laboratory cup test, using the mixing ratio on the left will have the reactivity listed in Table 3.

Table 4: Supplementary properties						
Item	Unit	Specification	Test standard			
Core density	kg/m³		ASTM D 1622-08			
Thermal conductivity,20°C	W/(m.k)	< 0.024	ASTM C518-10			
Compressive strength	kPa	>140	ASTM D1621-10			
Closed Cell content	%	>93	ASTM D6226			
Water absorb	%	<3	ASTMC209-12			
Thermal stability, 30-80°C	%	<1.5	ASTM D2126-09			

Supplementary data

The above testing data have been generated in lab or field conditions which are typical for this application. They are believed to be correct but data variations due to varying processing or ambient conditions can not be excluded. The customer remains responsible for making his own interpretation of data and suitability o the chemicals to his particular operation

Last updated:

Issued on: 17-Jun-24 Ref: